Longest-path Algorithm to Solve Uncovering Problem of Hidden Markov Model
نویسنده
چکیده
Uncovering problem is one of three main problems of hidden Markov model (HMM), which aims to find out optimal state sequence that is most likely to produce a given observation sequence. Although Viterbi is the best algorithm to solve uncovering problem, I introduce a new viewpoint of how to solve HMM uncovering problem. The proposed algorithm is called longest-path algorithm in which the uncovering problem is modeled as a graph. So the essence of longest-path algorithm is to find out the longest path inside the graph. The optimal state sequence which is solution of uncovering problem is constructed from such path.
منابع مشابه
On Ef cient Viterbi Decoding for Hidden semi-Markov Models
We present algorithms for improved Viterbi decoding for the case of hidden semi-Markov models. By carefully constructing directed acyclic graphs, we pose the decoding problem as that of finding the longest path between specific pairs of nodes. We consider fully connected models as well as restrictive topologies and state duration conditions, and show that performance improves by a significant f...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملAn Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set
Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...
متن کاملThe Online Loop-free Stochastic Shortest-Path Problem
We consider a stochastic extension of the loop-free shortest path problem with adversarial rewards. In this episodic Markov decision problem an agent traverses through an acyclic graph with random transitions: at each step of an episode the agent chooses an action, receives some reward, and arrives at a random next state, where the reward and the distribution of the next state depend on the act...
متن کاملComparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice
A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...
متن کامل